

Journal of Power Sources 104 (2002) 265-271

www.elsevier.com/locate/jpowsour

Effects of NH₃ and NO_x on the performance of MCFCs

Makoto Kawase^{a,*}, Yoshihiro Mugikura^a, Takao Watanabe^a, Yuki Hiraga^b, Toshihide Ujihara^b

^aCentral Research Institute of Electric Power Industry, 2-6-1 Nagasaka, Yokosuka, Kanagawa 240-0196, Japan ^bShikoku Research Institute Incorporated, 2109-8 Yashima-nishimachi, Takamatsu, Kagawa 761-0192, Japan

Received 16 July 2001; received in revised form 19 September 2001; accepted 25 September 2001

Abstract

To evaluate the effect NH_3 and NO_x have on the performance of molten carbonate fuel cells (MCFCs), bench-scale cell tests and half-cell experiments have been performed with fuel gas containing NH_3 , or with oxidant gases containing NO_x . Most of the added NH_3 is discharged from the anode, and does not affect the cell voltage. The NO_x does harm to the cell voltage during earlier operating stages, but the harm tends to decrease with increasing operating time. The main cause for the cell voltage drop is the increase of internal resistance. As a result of the analyses regarding the electrolyte composition in the operated cells, the gas composition and the cyclic voltammograms, the behavior of NO_x in the cell is found to be as follows: NO_x reacts with the carbonate and dissolves in the electrolyte to make NO_2^- and NO_3^- . These ions react with the hydrogen in the fuel gas and lead to the production of N_2 and a small amount of NH_3 . Consequently, NO_2^- and NO_3^- are not accumulated in the electrolyte, and the effect of NO_x on the cell life expectancy is slight. © 2002 Elsevier Science B.V. All rights reserved.

Keywords: Coal gas; CO₂ recycling system; MCFC; NH₃; NO_x

1. Introduction

Coal gas, which is expected to serve as the primary fuel for MCFCs, contains many contaminants such as H₂S, HCl, HF and NH₃. NH₃ is one of these contaminants. The amount of NH₃ produced is influenced by the ingredients of coal and the gasification process employed. Generally, the MCFC power plant is equipped with a CO₂ recycling system, which completely converts the CO discharged from the anode as CO₂ during a catalytic burning process and supplies the cathode with CO₂ [1]. NO_x is also generated from NH₃ during the catalytic burning process and is used to supply the cathode. Fig. 1 shows the diagram of the gas cycle in MCFCs. For example, if the concentration of NH₃ in the anode outlet gas is approximately 250 ppm, the concentration of NO_x in the oxidant gas is calculated to be approximately 20-50 ppm. Therefore, it is necessary to clarify the acceptable NO_x concentration and determine the acceptable NH₃ concentration in each power generation system. In this study, we have discussed the effect NH_3 and NO_x have on the performance of MCFCs and the behavior of NO_x in half-cell

experiments and bench-scale cell tests with the oxidant gas containing different levels of NO_x .

2. Experiments

2.1. Bench-scale cell tests

Cell performance data has been obtained by using benchscale cells with a 110 cm² effective electrode area manufactured by Ishikawajima-Harima Heavy Industries Co., Ltd. The cathodes are made of lithiated NiO, and the matrices, which are made of LiAlO₂, support a mixture of lithium carbonate and potassium carbonate (Li/K = 70/ 30 mol% (m/o)), which is used as the electrolyte. The anodes are Ni-based alloys. The basic operating conditions are: temperature 923 K, pressure 2.94 atm and current density 150 mA cm⁻². For the test, during which NH₃ is added to the fuel, gas cylinders containing H₂ and NH₃ (3000 ppm) are prepared, and the flow rates of the main gas (H₂/CO₂/ H₂O) and sub-gas (H₂/NH₃) are regulated for a target concentration of NH₃. Whereas for the test, during which NO_x is added to the oxidant gas, we prepared gas cylinders containing N₂ and NO (900 ppm). The flow rates of the main gas (N2/CO2/O2) and sub-gas (N2/NO) are regulated for a

^{*}Corresponding author.

E-mail address: kawase@criepi.denken.or.jp (M. Kawase).

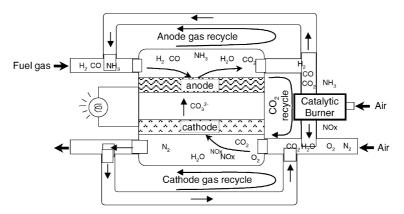


Fig. 1. Diagram of gas cycle in MCFC.

target concentration of NO_x . A part of the added NO reacts with the O_2 to form NO_2 . The concentration of NO_x in the inlet and outlet gases is analyzed by using gas analyzers manufactured by Horiba Co., Ltd.

In general, the performance of a MCFC can be expressed by the following equation:

$$V = E - \eta_{\text{ne}} - (R_{\text{ir}} + R_{\text{re}}) \times J \tag{1}$$

where V(V) is the actual cell voltage, E(V) the equilibrium voltage (open-circuit voltage), $\eta_{\rm ne}(V)$ the Nernst loss, $R_{\rm ir}(\Omega\,{\rm cm}^2)$ is the internal resistance, $R_{\rm re}(\Omega\,{\rm cm}^2)$ the reaction resistance, and $J(A\,{\rm cm}^{-2})$ is the current density. The actual cell voltage, the equilibrium voltage and the internal resistance are measured, whereas, the Nernst loss and the reaction resistance are estimated by using the Morita equation [2].

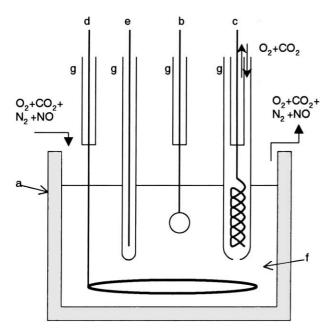


Fig. 2. Schematic diagram of experimental cell: (a) Al_2O_3 crucible; (b) working electrode; (c) reference electrode; (d) counter electrode; (e) thermocouple; (f) electrolyte; (g) Al_2O_3 tube.

2.2. Cyclic voltammetry

To investigate the state of the nitrogen oxides in the electrolyte, half-cell experiments are performed. Fig. 2 shows the schematic diagram of the experimental cell. The chamber containing the cell is especially designed for controlling the atmosphere. The working electrode is a gold plate (Ø 5 mm, t = 0.1 mm), the counter electrode a gold-ringed wire. The potentials refer to a Au (O₂/CO₂ = 33/67%) reference electrode. A mixture of lithium carbonate and potassium carbonate (Li/K = 62/38 mol% (m/o)) is used as the electrolyte. The supplied gases are mixtures of N₂, CO₂ and O₂. For the test with NO_x, gas cylinders containing N₂ and NO (900 ppm) are prepared, and the flow rates of the main gas (N₂/CO₂/O₂) and sub-gas (N₂/NO) are regulated for a target concentration of NO_x.

3. Results and discussions

3.1. Effect of NH_3 on the cell performance

Fig. 3 shows the changes in cell voltage, IR-free voltage and internal resistance by using a single cell operated at 150 mA cm⁻² and 923 K with NH₃ (500 ppm) contained within the fuel gas. The period during which NH₃ is added is between 351 and 1531 h. The following has been determined: the cell voltage does not change due to the addition of NH₃. As a result of the anode gas analysis, the concentration of NH₃ in the outlet gas is almost equal to that in the inlet gas from early stages of the addition. Therefore, we can establish that NH₃ hardly dissolves in the electrolyte and does not react with the carbonate. Hence, approximately 500 ppm NH₃ is harmless to the cell performance.

3.2. Effect of NO_x on the cell performance

Fig. 4 shows the changes in cell voltage, IR-free voltage and internal resistance in a single cell operated at 150 mA cm^{-2} and 923 K with NO_x (50 ppm) contained in the oxidant gas. NO_x is added during two periods, namely

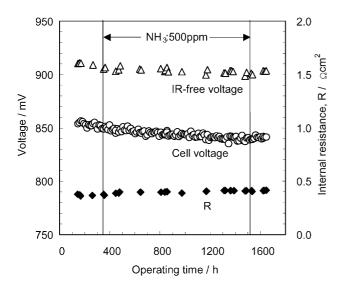


Fig. 3. Changes of cell voltage, IR-free voltage and internal resistance in a single cell operated at 150 mA cm $^{-2}$ and 923 K with NH₃ impurity in the oxidant gas. Oxidant gas composition: N₂/O₂/CO₂ = 55/15/30; $U_{\rm ox}$, 40%. Fuel gas composition: H₂/CO₂/H₂O = 64/16/20; fuel utilization, 60%; pressure, 2.94 atm.

between 500 and 1462 h and between 1849 and 4173 h. The total time of added NO_x results to 3300 h. It has been found that the cell performance drops due to the NO_x addition. During both periods, the cell voltage degradation rate is greater during the early stages, but shows a tendency to decrease with increasing operating time. Between the first and the second period, the internal resistance reduces with operating time, and the cell performance recovers. Since the changes in the IR-free voltage are very small during operation, the increase in internal resistance is responsible for the cell voltage loss. The increase in internal resistance is believed to be due to the low conductive product, which

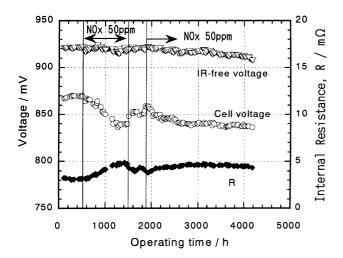


Fig. 4. Changes of cell voltage, IR-free voltage and internal resistance in a single cell operated at 150 mA cm $^{-2}$ and 923 K with NO_x impurity in the oxidant gas. Oxidant gas composition: N₂/O₂/CO₂ = 55/15/30; $U_{\rm ox}$, 40%. Fuel gas composition: H₂/CO₂/H₂O = 64/16/20; fuel utilization, 60%; pressure, 2.94 atm.

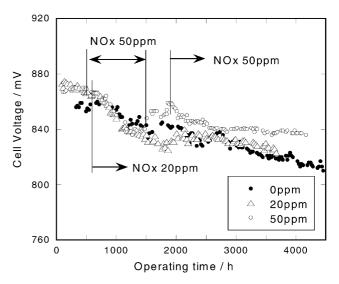


Fig. 5. Cell voltage changes according to various NO_x levels at 150 mA cm⁻². The operating conditions correspond with Fig. 4.

is created in the reaction of NO_x and the cell components. This low conductive product has a certain saturation point and disintegrates in clean gas conditions. Because nitrate and nitrite ions, which dissolve in the electrolyte, have a higher conductivity than carbonate ions, the product can be found in the corrosion layer in the current collector.

Moreover, in the test with 20 ppm NO_x , the main cause for the cell voltage loss is also the increase in internal resistance. Fig. 5 shows the cell voltage changes with 20 and 50 ppm NO_x and without NO_x . The cell voltage degradation rate is larger in the early adding stages, but the increase rate of the internal resistance diminishes with increasing operating time. Furthermore, the cell performance with 20 ppm NO_x is almost equal to that without NO_x after 2000 h.

3.3. Behavior of nitride compounds in the cell

To explain the pattern of the cell voltage decline, we would like to discuss the state of nitride compounds in the electrolyte, the removal ratio of NO_x and the behavior of nitride compounds in the cell.

3.4. State of nitride compounds in the electrolyte

It has been reported that NO_2 is absorbed by molten alkali carbonate to form nitrites and nitrates according to the following reaction [3]:

$$M_2CO_3 + 2NO_2 \rightarrow MNO_2 + MNO_3 + CO_2$$
 (2)

where M is the alkali metal.

The relation between NO₂⁻ and NO₃⁻ in correspondence with the molten alkali nitrate and nitrite has been discussed by many scientists [4–9]. Nitrite is formed by the thermal decomposition equilibrium [4,5]:

$$NO_3^- \leftrightarrow NO_2^- + \frac{1}{2}O_2$$
 (3)

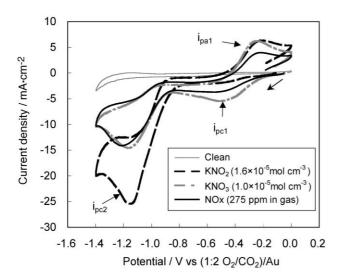


Fig. 6. Cyclic voltammograms for Au electrode in $\text{Li}_2\text{CO}_3\text{-}\text{K}_2\text{CO}_3$ eutectic melt at 923 K, scan rate 0.2 V s⁻¹. The gas composition is 55% nitrogen, 15% oxygen and 30% carbon dioxide.

Furthermore, the relation between NO₃⁻ and NO₂⁻ depends on the super oxide and power oxide ions, which are formed during the following reactions [6–8]:

$$NO_3^- + O^{2-} \leftrightarrow NO_2^- + O_2^{2-}$$
 (4)

$$2NO_3^- + O_2^{2-} \leftrightarrow 2NO_2^- + 2O_2^- \tag{5}$$

Similarly, the same reactions can be seen regarding the molten alkali carbonate.

The state of nitrogen oxides in the electrolyte has been investigated by applying the cyclic voltammogrammetry. Fig. 6 presents the cyclic voltammograms after the addition of NO_x (275 ppm into the gas), KNO₂ (1.6 \times 10⁻⁵ mol cm⁻³ into the electrolyte), and KNO_3 (1.0 \times 10⁻⁵ mol cm⁻³ into the electrolyte). The cyclic voltammograms of the KNO₂ and KNO₃ additions are measured 1 h after the addition, whereas the cyclic voltammogram of NO_x is measured 91 h after adding NO_x. Two cathodic peaks (i_{pc1}, i_{pc2}) and one anodic peak (i_{pa1}) are observed at -0.4, -1.2 and -0.2 V in all voltammograms. The peak currents depend on the additives and change with time. Fig. 7 shows the change in peak current ratios (i_{pc1}/i_{pc2}) according to time after the addition of NO_x, KNO₂ and KNO₃. Regarding the addition of KNO₂ and KNO₃, the peak current ratio (i_{pc1}/i_{pc2}) moves close to 0.3 with increasing time. On the other hand, regarding the addition of NO_x, the peak current ratio is stable at approximately 0.26. However, once the addition of NO_x is stopped, the ratio changes towards 0.3.

In summary, one can say that NO_x reacts with the carbonate, and it is therefore, able to dissolve in the electrolyte as NO_2^- and NO_3^- . The i_{pc2} is related to the reduction of NO_2^- , because i_{pc2} is larger after the addition of KNO_2 . Moreover, NO_2^- changes into NO_3^- with time.

On the other hand, i_{pc1} is related to the reduction of NO₃⁻, because i_{pc1} is larger after the addition of KNO₃.

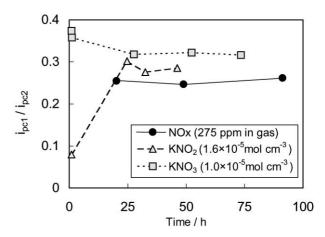


Fig. 7. Change in ratio of two peak current $(i_{\rm pc1}/i_{\rm pc2})$ with time after an addition of NO_x (275 ppm in the gas as in Fig. 6), KNO₂ (1.6 × 10⁻⁵ mol cm⁻³ in the electrolyte), or KNO₃ (1.0 × 10⁻⁵ mol cm⁻³ in the electrolyte).

Furthermore, NO_3^- decomposes to NO_2^- with time according to the reactions (3)–(5). The concentration of NO_3^- and NO_2^- reaches an equilibrium.

The reduction of NO_3^- and NO_2^- in the LiCl–KCl eutectic is reported by Goto et al. [10]:

$$NO_3^- + 2e^- \rightarrow NO_2^- + O^{2-}$$
 (6)

$$NO_2^- + 2e^- \to NO^- + O^{2-}$$
 (7)

It is known that the concentrations of ${\rm O}^{2-}$, ${\rm O}_2^-$ and ${\rm O}_2^{2-}$ in the Li/K carbonate are higher than those in the LiCl–KCl eutectic. Therefore, the reduction of ${\rm NO}_3^-$ and ${\rm NO}_2^-$ in the Li/K carbonate is not only related to ${\rm O}^{2-}$, but also to ${\rm O}_2^-$ and ${\rm O}_2^{2-}$ according to the following reactions:

$$2NO_3^- + e^- \to 2NO_2^- + O_2^- \tag{8}$$

$$NO_3^- + e^- \rightarrow NO_2^- + \frac{1}{2}O_2^{2-}$$
 (9)

$$2NO_2^- + e^- \to 2NO^- + O_2^- \tag{10}$$

$$NO_2^- + e^- \to NO^- + \frac{1}{2}O_2^{2-}$$
 (11)

3.5. Behavior of NO_x in MCFCs

We have analyzed the anode and cathode outlet gases in the test shown in Fig. 4. The concentration of NO_x in the cathode outlet gas is stable at approximately 35% of the added NO_x . A small amount of NH_3 , which is approximately 1–3% of the added NO_x , is detected. However, other nitrogen compounds, which would be N_2O , NO or NO_2 , are not detected. The content of nitrogen compounds in the electrolyte, which is measured in all cells after completing the tests, is only 0.1–0.3% of the added NO_x . Furthermore, we can confirm that NO_3^- and NO_2^- does not decompose immediately during the cooling process in the half-cell experiment. Therefore, nitrogen compounds do not accumulate in the electrolyte.

Table 1
Balance of nitrogen compounds in a single cell operated according to conditions in Fig. 4 and a simulated cell^a

	Single cell (%)	Simulated cell (%)
NO_x at the inlet	100	100
NO_x at the outlet (cathode for the single cell)	32	92
NH ₃ in anode exhaust	1	_
NO ₂ ⁻ and NO ₃ ⁻ accumulated in electrolyte	0.2	8
Not detected	67	_

^a The simulated cell consists of the same electrolyte plate (carbonated + LiAlO₂, without electrodes) as in the single cell, and it is exposed to a gas mixture $(N_2/O_2/CO_2 = 55/15/30, NO_x = 50 \text{ ppm}, 1027 \text{ ml min}^{-1})$.

To confirm the effect the anode has on the mass balance of nitrogen compounds, we have investigated the solubility of NO_x in the molten carbonate under cathode gas conditions by using a simulated cell. The simulated cell consists of the same electrolyte plate (carbonated + LiAlO₂, without electrodes) as the single cell, and it is exposed to the gas mixture $N_2/O_2/CO_2 = 55/15/30$ and $NO_x = 50$ ppm. The flow rate of the oxidant gas is equivalent to that in the single cell test shown in Fig. 4. The gas analysis shows that the amount of NO_x in the outlet gas is approximately 92% of the added NO_x 2 h after the addition. Hence, only 8% of the added NO_x is absorbed by the carbonate. This result is different from that of the single cell test, as listed in Table 1. North American Rockwell Co. has reported that the absorption ratio of NO_x in alkali carbonates is over 50% in gas conditions without CO₂, but that the absorption rate is under 15% in gas conditions with CO₂ [11]. This result corresponds with the result of the simulated cell test. Therefore, the continuous and high removal ratio of NO_x in the single cell depends on the anode. The general belief is that NO₂⁻ and NO₃⁻ are not accumulated in the electrolyte and that they change into nitrogen at the anode where they are continuously exhausted.

3.6. Removal ratio of NO_x

3.6.1. Effects of oxidant gas composition

While the experimental conditions of the fuel gas and the flow rate of the oxidant gas are stable, the concentration of NO_x in the cathode outlet gas is measured at various oxidant gas compositions. Fig. 8 presents the effect the oxidant gas composition has on the NO_x removal ratio. The removal ratio of NO_x is defined as

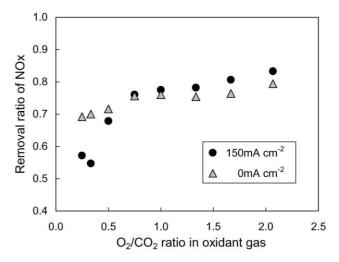


Fig. 8. Effect of oxidant gas composition on removal ratio of NO_x . Oxidant gas flow rate, 1046 ml min⁻¹; concentration of NO_x , 50 ppm. Fuel gas composition: $H_2/CO_2/H_2O = 64/16/20$; fuel utilization at 150 mA cm⁻², 60%; temperature, 923 K; pressure, 2.94 atm.

the O_2/CO_2 ratio proves that the dissolution of NO_x in the electrolyte is related to the following reactions:

$$2NO + \frac{3}{2}O_2 + M_2CO_3 \rightarrow 2MNO_3 + CO_2$$
 (M = Li, K) (13)

$$2NO + \frac{1}{2}O_2 + M_2CO_3 \rightarrow 2MNO_2 + CO_2 \quad (M = Li, K) \eqno(14)$$

$$2NO_2 + \frac{1}{2}O_2 + M_2CO_3 \rightarrow 2MNO_3 + CO_2$$
 (M = Li, K) (15)

3.6.2. Effects of the fuel gas composition

While the experimental conditions of the oxidant gas are stable, the concentration of NO_x in the cathode outlet gas is measured at various fuel gas compositions. Fig. 9 shows the effect the fuel gas composition has on the NO_x removal ratio. We have been able to detect an improvement in the NO_x removal ratio at a higher H_2 concentration. As mentioned above, a small amount of NH_3 is contained in the anode outlet gas, whereas, other nitrogen compounds are not contained in the mentioned gas. Therefore, it is assumed that most of the NO_2^- and NO_3^- reacts with the H_2 to form N_2 according to the following reactions:

$$2NO_3^- + 6H_2 \rightarrow N_2 + 6H_2O + 2e^-$$
 (16)

$$2NO_2^- + 4H_2 \rightarrow N_2 + 4H_2O + 2e^-$$
 (17)

$$2NO_3^- + 5H_2 \rightarrow N_2 + 4H_2O + 2OH^- \tag{18}$$

removal ratio of
$$NO_x = 1 - \frac{\text{flow rate of oxidant outlet gas} \times NO_x \text{ concentration in oxidant outlet gas}}{\text{flow rate of oxidant inlet gas} \times NO_x \text{ concentration in oxidant inlet gas}}$$
 (12)

We have been able to determine an improvement in the NO_x removal ratio at a higher O_2/CO_2 ratio. This dependence of

$$2NO_2^- + 3H_2 \rightarrow N_2 + 2H_2O + 2OH^-$$
 (19)

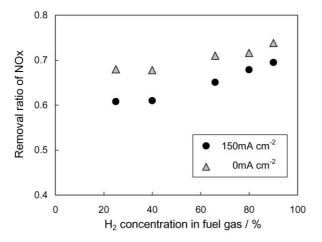


Fig. 9. Effect of H_2 concentration in fuel gas on removal ratio of NO_x . Oxidant gas composition: $N_2/O_2/CO_2 = 55/15/30$; concentration of NO_x , 50 ppm; fuel utilization at 150 mA cm⁻², 60%; temperature, 923 K; pressure, 2.94 atm.

3.6.3. Effects of the fuel and oxidant gas flow rate

Fig. 10 shows the effect the oxidant gas flow rate has on the removal ratio of NO_x . The amount of NO_x and NO in the cathode outlet gas is proportional to the amount of added NO_x . The following relations express this phenomenon.

Exhausted NO_x =
$$0.60 \times (\text{added NO}_x) - 2.3$$

 $\times 10^{-7} \quad (\text{mol min}^{-1})$
Exhausted NO = $0.36 \times (\text{added NO}_x)$
 $-1.3 \times 10^{-7} \quad (\text{mol min}^{-1})$

The removal ratio of NO_x moves close to 40% as the oxidant gas flow rate increases. Therefore, the dissolution of NO_x in the electrolyte corresponds with Henry's law.

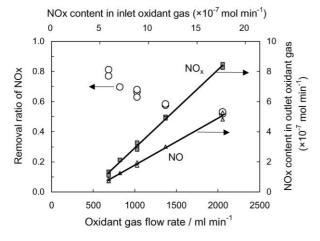


Fig. 10. Effect of oxidant gas flow rate on removal ratio of NO_x . Oxidant gas composition: $N_2/O_2/CO_2 = 55/15/30$; concentration of NO_x , 20 ppm. Fuel gas composition: $H_2/CO_2/H_2O = 64/16/20$; fuel gas flow rate, 327 ml min⁻¹; current density, 150 mA cm⁻²; fuel utilization, 60%; temperature, 923 K; pressure, 2.94 atm.

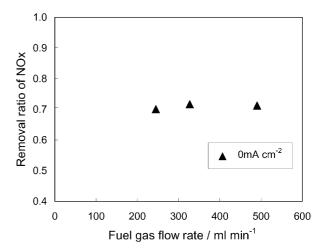


Fig. 11. Effect of fuel gas flow rate on removal ratio of NO_x . Oxidant gas composition: $N_2/O_2/CO_2 = 55/15/30$; concentration of NO_x , 50 ppm; oxidant gas flow rate, 1046 ml min^{-1} . Fuel gas composition: $H_2/CO_2/H_2O = 64/16/20$; temperature, 923 K; pressure, 2.94 atm.

Fig. 11 expresses the effect the fuel gas flow rate has on the removal ratio of NO_x , which is independent of the fuel gas flow rate. Hence, some of the reactions, which refer to the reactions (16)–(19), take place very quickly.

3.6.4. Effect of the current density

Fig. 12 presents the effect the current density has on the removal ratio of NO_x . If we consider the change of the cathode outlet gas flow rate and the gas composition according to the current density, the effect of the current density is negligible compared to the effect other factors have on the removal ratio. Therefore, it is almost definite that NO_2^- or NO_3^- react with H_2 according to the reactions (18) and (19).

We have come to a conclusion regarding the behavior of NO_x in the cell, which can be seen in Fig. 13. First of all, at the cathode, NO_x reacts with the carbonate and dissolves into

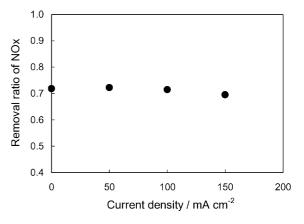


Fig. 12. Effect of current density on removal ratio of NO_x . Oxidant gas composition: $N_2/O_2/CO_2 = 55/15/30$; concentration of NO_x , 20 ppm. Fuel gas composition: $H_2/CO_2/H_2O = 64/16/20$; oxidant gas flow rate, 1046 ml min^{-1} ; fuel gas flow rate, 327 ml min^{-1} ; temperature, 923 K; pressure, 2.94 atm.

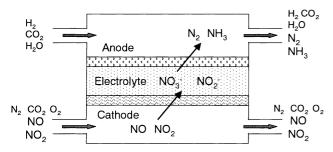


Fig. 13. Behavior of NO_x in MCFC.

 NO_2^- and NO_3^- in the electrolyte. Secondly, at the anode, NO_2^- and NO_3^- react with H_2 and change into N_2 and a small amount of NH_3 . Finally, N_2 and NH_3 are discharged from the anode outlet so that nitrogen compounds do not accumulate in the cell. The generation of substances, which cause the increase in internal resistance, is slow, and the cell performance does not drop by adding NO_x . Furthermore, this result shows that NO_x is purified and changed into N_2 , and that structures like MCFCs have the function of removing NO_x from the oxidant gas.

4. Conclusions

- NH₃ does not lessen the performance of the MCFCs, and most of the added NH₃ is discharged from the anode outlet.
- 2. In bench-scale cell tests, the addition of NO_x triggers a step by step increase of internal resistance, which causes the cell voltage to drop. However, this effect tends to decrease with increasing operating time. Because the cell voltage recovers during an interruption of adding NO_x , the cause of the increase in internal resistance is the production of low conductive substances, which disintegrate in clean gas conditions.
- 3. NO_x reacts with the carbonate at the cathode and dissolves into NO_2^- and NO_3^- in the electrolyte. NO_2^-

and $\mathrm{NO_3}^-$ react with $\mathrm{H_2}$ and change into $\mathrm{N_2}$ and small amounts of $\mathrm{NH_3}$ at the anode. Finally, $\mathrm{N_2}$ and $\mathrm{NH_3}$ are discharged from the anode outlet. Therefore, nitrogen compounds do not accumulate in the cell, and the high removal ratio of $\mathrm{NO_x}$ is maintained. Moreover, the generation of the substances, which cause the increase in internal resistance, is slow, and consequently the drop of the cell performance by adding $\mathrm{NO_x}$ is small.

Acknowledgements

Part of this work was conducted in cooperation with the New Energy and Industrial Technology Development Organization (NEDO) and the Technology Research Association for Molten Carbonate Fuel Cell Power Generation System (MCFC) in the context of the New Sunshine Program of Ministry of International Trade and Industry (MITI). We appreciate everybody's advice and support.

References

- [1] A.J. Appleby, F.R. Foulkes, Fuel Cell Handbook, 1989, 98 pp.
- [2] H. Morita, Y. Mugikura, Y. Izaki, T. Watanabe, T. Abe, J. Electrochem. Soc. 145 (1998) 1511.
- [3] W. Bartok, A.R. Crawford, H.J. Hall, E.H. Manny, A. Skopp, Systems Study of Nitrogen Oxide Control Methods for Stationary Sources, Final Report, Vol. 2, NAPCA Contract PH-22-68-55, Report GR-2-NOS-69, 1969.
- [4] R.N. Kust, J.D. Burke, Inorg. Nucl. Chem. Lett. 6 (1970) 333.
- [5] E.S. Freeman, J. Phys. Chem. 60 (1956) 1487.
- [6] P.G. Zambonin, J. Jordan, J. Am. Chem. Soc. 89 (1967) 6365.
- [7] P.G. Zambonin, J. Jordan, J. Am. Chem. Soc. 91 (1969) 2225.
- [8] P.G. Zambonin, Electroanal. Chem. 45 (1973) 451.
- [9] D.H. Kerridge, Molten Salt Forum 5/6 (1998) 469.
- [10] T. Goto, M. Tada, T. Ito, Electrochim. Acta 39 (1994) 1107.
- [11] Atomics International—North American Rockwell Corp. Monthly Progress Report, 1 December 1968 to 1 January 1969, Contract PH 86-67-128.